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MACHINE LEARNING MODELS IN PRACTICE

MLaaS 
Providers

The increasing complexity of 
Machine Learning Models and 
Training Processes has promoted 
training outsourcing and Machine 
Learning as a Service (MLaaS). 

This creates a paramount 
security concern in the model 
building supply chain.



BACKDOOR ATTACKS

Backdoor attacks can lead harmful 
consequences when the ML models 
are deployed in real life.
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Backdoor Attack 
influences the 
model prediction 
by modifying the 
model’s behavior 
during the 
training process 
with a backdoor.
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BACKDOOR ATTACKS
(Causative)

ADVERSARIAL ATTACKS
(Exploratory)

Training Sample (Triggered) Training Sample (Class A) Training Sample (Class B)

Test Sample (Class A)

With trigger

With small 
perturbation

- Modifies training samples or 
training process intelligently 

- Requires owning the training data 
or training process 

- Directly modifies the testing samples



HOW IS THE BACKDOOR INJECTED?

Consider a classification task

Training Data Training Data with Trigger

(1) Generate triggered data

(2) Poison the model (under empirical risk minimization)



▷ The trigger function is predefined and trigger is fixed:
○ Patched, Blended, SIG, ReFool: training algorithm is not modified.

static trigger
dynamic 

trigger
dynamic,
learnable 

trigger

    Original          Patched                Blended                      SIG                        ReFool                  WaNet                       LIRA
                [Gu et al 2017]     [Chen et al 2018]  [Barni et al 2019]     [Liu et al 2020]        [Nguyen  et al 2021]  [Doan  et al 2021]

▷ The trigger function is predefined but trigger is dynamic:
○ WaNet: training algorithm is modified (with noise mode).

▷ The trigger function is learned with dynamic trigger:
○ LIRA:  training algorithm is modified (simultaneously learn the 

trigger and poison the DNN)



WaNet & LIRA PASS SOME DEFENSES

Neural Cleanse-Offline Defense
Pass defense if Anomaly Index ≤ 2

STRIP-Online Detection [Gao et al 2019]

Pass defense if poisoned images have similar 
entropies to clean images.

Fine-Pruning [Liu et al 2018]

Pruning the network will affect the 
backdoor

[Wang et al 2019]



BUT SOME DEFENSES ARE TOUGH

[Chen et al, 2018]

All-to-OneBenign Model

Activations of the last hidden layer (penultimate) with 2-dimensional  t-SNE projections. There 
exists a clear separation between the poisoned and clean data of a predicted class. Activation 
Clustering detects such separations and removes poisoned data, then re-trains the model. 

All-to-All

We observe such separations in the existing methods, including Badnets [Gu et al 2017],  WaNet 
[Nguyen et al 2021] & LIRA [Doan et al 2022].
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IMPERCEPTIBLE INPUT AND LATENT MODIFICATION

▷ Solve the constrained optimization problem:
clean data objective triggered data objective

▷ The trigger function can be defined as:

high attack performance minimize the difference 

in the latent space



DIRECTIONAL SLICED WASSERSTEIN DISTANCE (DSWD)

Wasserstein Distance: O(N2.5 log(N))

Sliced Wasserstein Distance: O(LN log(N)) random direction sampled from the unit sphere

Directional Sliced Wasserstein Distance: O(|C| N log(N))

fixed, maximally-separated directions



DSWD IS A VALID DISTANCE WITH BETTER EFFICIENCY

Theorem 1: When the latent space is the penultimate layer of a 
neural network, the proposed DSWD distance is a valid distance 
function of probability measures in this space.

(a) Pre-activation Resnet-18 Model     (b) CNN Model
Figure 1: Distance estimates in the latent space for SWD with different 

number of sampled directions (between 10 to 10,000) and DSWD.



EXPERIMENT: ATTACK PERFORMANCE

All-to-All Attack
● All methods attack performance decrease 
● WB’s attack performance slightly drops 

compared to LIRA

All-to-One Attack
● WB achieves comparable attack 

performance 
● WB’s attack performance slightly drops 

compared to LIRA

Dataset WaNet LIRA WB
Clean Attack Clean Attack Clean Attack

MNIST 0.99 0.99 0.99 1.00 0.99 0.99
CIFAR10 0.94 0.99 0.94 1.00 0.94 0.99
GTSRB 0.99 0.98 0.99 1.00 0.99 0.99
TinyImagenet 0.57 0.99 0.57 1.00 0.57 0.99

Dataset WaNet LIRA WB
Clean Attack Clean Attack Clean Attack

MNIST 0.99 0.95 0.99 0.99 0.99 0.96
CIFAR10 0.94 0.93 0.94 0.94 0.94 0.94
GTSRB 0.99 0.98 0.99 1.00 0.99 0.98
TinyImagenet 0.58 0.58 0.58 0.59 0.58 0.58



THE LEARNED LATENT SPACE IS INSEPARABLE

  (a) All-to-one: LIRA           (b) All-to-one: WB         (c) All-to-all: LIRA        (d) All-to-all: WB

Figure 2: MNIST: t-SNE embedding in the latent space.

  (a) All-to-one: LIRA           (b) All-to-one: WB         (c) All-to-all: LIRA        (d) All-to-all: WB

Figure 3: CIFAR10: t-SNE embedding in the latent space.



BYPASSING SPECTRAL SIGNATURE [Tran et al 2018]

Plot of correlations for 5000 training examples correctly labeled and 
500 poisoned examples incorrectly labeled. The values for the clean 
inputs are in blue, and those for the poisoned inputs are in green. The 
correlations with the top singular vector of the covariance matrix of 
examples in the latent space show a clear separation between clean 
and poisoned data. In WB, we don’t have this separation (below).



CONCLUSIONS

▷ Existing attack methods are not able to bypass 
latent-space defenses.

▷ We extend the imperceptibility from input space into 
latent space in Wasserstein Backdoor (WB):
○ WB regularizes the distributional difference between the 

backdoor and clean latent samples.
○ WB uses Directional Sliced Wasserstein Distance that is a 

valid distance and efficient to compute.
▷ It is time for a new type of defense that can mitigate 

the security risks of attacks similar to WB.
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